
Copyright © 2005 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2005 ACM 1-59593-203-6/05/0005 $5.00

Synthesizing 2D Directional Moving Texture

Bin Wang∗

Tsinghua University/Alice-ISA, Loria
Wenping Wang†

The University of Hong Kong
Junhai Yong‡

School of Software, Tsinghua University
Jiaguang Sun§

School of Software, Tsinghua University

Abstract

We present a novel patch-based algorithm for synthesizing a mov-
ing 2D texture, i.e. a sequence of frame-coherent 2D textures. In
our method, the input are a sample texture and a 2D flow field. We
first synthesize a 2D directional texture according to the direction
information of the flow field and then let the texture move follow-
ing the flow. Iteratively, the texture Ti+1 of the (i + 1)-th frame
is first obtained by moving forward the texture Ti in a piecewise
manner. Then necessary hole-filling and blending is used to make
Ti+1 coherent with Ti. In addition, to maintain good visual quality
throughout the sequence of textures, best-matching patches from
the sample texture are used at selected locations of Ti+1 to prevent
cumulative blurring due to blending. Our test examples show that
our method is capable of generating high quality moving textures
with attractive visual effects that are useful for flow visualization.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation— [I.4.7]: Image Processing and Computer Vision—
Feature Measurement–Texture

Keywords: vector field, moving texture, texture synthesis

1 Introduction

Texture synthesis is a technique that uses a sample texture to gener-
ate a synthesized texture that is visually similar to the sample tex-
ture but not a verbatim copy. Texture synthesis has attracted active
research efforts due to wide application of textures in appearance
modeling in computer graphics. All existing methods for texture
synthesis consider the synthesis of static textures. We present in
this paper the first method to synthesize a moving texture, i.e a se-
quence of frame-coherent 2D synthesized textured images, from a
static sample texture and a flow field. Besides the common issues
encountered in synthesizing static textures, the new challenges in
our work are to ensure coherence between consecutive frames and
to maintain good visual clarity of a moving texture.

∗e-mail:bin.wang@loria.fr
†e-mail:wenping@cs.hku.hk
‡e-mail:yongjh@tsinghua.edu.cn
§e-mail:sunjg@tsinghua.edu.cn

Among existing methods for texture synthesis, pixel-based methods
and patch-based methods are relatively recent developments and are
most relevant to the present paper. The papers [Efros and Leung
1999], [Hertzmann et al. 2001], [Tong et al. 2002], [Turk 2001],
[Wei and Levoy 2000], [Wei and Levoy 2001], [Ying et al. 2001]
and [Gorla et al. 2003] belong to the category of the pixel-based
approach; among them, some papers focus on 2D texture synthe-
sis and the others are about texture synthesis over surfaces. Patch-
based texture synthesis methods have proven faster than pixel-based
methods. Xu et al. [Xu et al. 2000] use square patches of fixed
size randomly selected from the sample texture and alpha-blend the
overlapping parts of adjacent patches to synthesize a texture. Xu et
al.’s method is improved by Efros and Freeman [Efros and Freeman
2001] stitching together adjacent texture patches along a minimum-
error boundary in their overlapping region. Liang et al. [Liang et al.
2001] extend Xu et al.’s method by finding the patch in the over-
lapping region which most closely resembles the adjacent patches
already synthesized, and compositing the new patch with those al-
ready synthesized using feather blending. Wang et al. [Wang et al.
2004] extend Liang et al’s method to handle texture patches of dif-
ferent sizes and orientations and to synthesize directional textures
in regions with irregular boundaries.

In this paper, we study here how to generate a moving texture, i.e.
a sequence of frame-coherent directional textures, i.e. an anima-
tion sequence of textures. There are two requirements for such a
moving texture. First, the structure of the sample texture should be
preserved and the direction of the flow field should be reflected in
each frame of texture. Second, consecutive frames should be co-
herent, i.e. continuous over time. Given a steady flow field and a
small sample texture, we first use the patch-based method presented
in [Wang et al. 2004] to synthesize a large directional texture, as the
first frame, according to the direction of the flow field. Take Fig-
ure 10 as an example of this step. Figure 10(a) is a sample texture
of canes; Figure 10(b) is a flow field in which vectors at all pixels
are tangent to a family of concentric circles. Figure 10(c) is a syn-
thesized directional texture, which is the first frame of an animation
sequence showing the flow defined in Figure 10(b). Clearly, Fig-
ure 10(c) shows the directions of the flow field, while maintaining
the structure of the sample texture.

Once the first frame T1 has been obtained, following the velocity of
the flow field, we move properly subdivided cells in T1 to obtain the
texture T2 of the next frame. Hole-filling and blending operations
are applied to make T2 seamless and coherent with the previous
frame T1. The above step is applied iteratively to generate the tex-
ture Ti+1 of the (i+1)-th frame from Ti, i > 0. In this way, the frame
coherence between consecutive frames is preserved, while the tex-
ture of each frame resembles the sample texture. The sequence of
textures thus generated produces an animation of a moving texture.

Our method bears some similarity to previous texture advection
methods ([van Wijk 2002], [Neyret 2003]) developed for flow vi-
sualization. These methods, although fast, are only applicable to
random noise images and cannot be used with structured textures.
We take a step beyond this status quo to consider advecting a struc-
tured moving texture along a 2D flow field.

177

2 Algorithm

Our algorithm takes a sample texture and a flow field as input, and
generates a sequence of frame-coherent textures which move fol-
lowing the flow field. The following are the main steps in our
method:

(1) The texture T1 of the first animation frame is synthesized. Set
the current frame Tct to be the first frame T1.

(2) Subdivide Tct into cells that observe the velocity constraint
that all pixels in each cell share similar flow velocity. Move
these cells according to the flow field to get a texture Tnt for
the next frame.

(3) Since the moved cells from Tct may overlap or leave some
pixels unfilled, creating holes, in Tnt , we use blending and
hole-filling operations to repair Tnt to make Tnt continuous,
while keeping it coherent with Tct .

(4) To prevent texture visual quality from deteriorating due to cu-
mulative effect of blending in Step (3), we use best-matching
patches from the sample texture to re-synthesize regions that
have gone through a certain number of blending operations.

(5) If the last frame has been reached, stop; otherwise, set the next
frame as the current frame, i.e. Tct := Tnt and go to Step (2).

The above steps are elaborated in the following subsections.

2.1 Synthesizing the first frame

We explain now how to synthesize the first frame as a 2D direc-
tional texture, following [Wang et al. 2004]. We first subdivide the
given vector field into cells of the same size and then check the di-
rections of all the pixels within each cell. If the directions do not
satisfy the direction constraint, the cell is then subdivided into four
smaller cells. And we then recursively check the four smaller cells
to see whether they should be subdivided or not. The direction con-
straint in our implement is set to |ai −a j| < 2π/n for all i, j, where
i, j are pixels within the cells and ai is the direction on the pixel i; n
is typically set to 24 or 48. Furthermore, to avoid efficiency degra-
dation, we limit the cell size to be 4× 4 pixels at least, i.e. only
cells larger than 4× 4 can be subdivided. We observed that, for
most vector fields, using 4×4 pixels as the smallest cell size strikes
a good balance between keeping the efficiency of patch-based syn-
thesis and accommodating the direction variation of a vector field.
The largest cell size is set to be 32×32. Figure 1 shows many cells
over a vector field to be synthesized.

All cells in the first frame are synthesized from left to right and
bottom to top. We use Figure 2 to briefly illustrate this procedure,
which is discussed in detail in [Wang et al. 2004]. Figure 2(a) gives
a sample texture. Suppose that the cell α , also called a patch, in
Figure 2(b) is the next cell to be synthesized. Since the direction of
the vector field at the cell α is not parallel to the horizontal side of
α , we search in a rotated copy of the sample texture (Figure 2(c))
to find a best-fit patch γ , and paste γ at the cell α . The “best fit”
means that the L-shaped boundary (white shadow area) of α and
the L-shaped boundary of γ have minimum difference. To fur-
ther eliminate boundary artifacts, in a preprocessing step, we use
feather blending within the boundaries of the neighboring patches
as in [Liang et al. 2001] and [Wang et al. 2004]. To speed up the
search for a best-fit patch in a rotated copy of the sample texture,
we compute and store n (n = 24 or 48) rotated copies of the sample
texture for efficient access later. The main direction of the sample

Figure 1: The cells to be synthesized after the preprocess stage.

(a) (b) (c)

Figure 2: Synthesis of a 2D directional texture.

texture is determined using the algorithm of Tamura et al. [Tamura
et al. 1978].

2.2 Synthesizing a new frame

Suppose that the first frame has been synthesized. Now we consider
how to synthesize the subsequent frames.

2.2.1 Moving patches

The synthesis of the texture of a new frame from its previous frame
is the most critical, and also the most difficult task, since one needs
to ensure both frame coherence and visual quality of the new frame.
A straightforward but naive approach would be to move all pixels in
the previous frame following the vector field to generate the texture
for the next frame. However, with this approach, the texture struc-
ture would be destroyed gradually by the accumulative stretching
or shrinking due to the non-uniform velocity of the vector field, as
illustrated by Figure 3. Figure 3(a) shows a vector field, Figure 3(b)
shows the first frame of moving texture, and Figure 3(c) shows the
20-th frame of animation generated by consecutive movement of in-
dividual pixels. It is evident that the original structure of the sample
texture is totally lost in a large portion of the 20-th frame.

To circumvent the difficulty of keeping the texture structure while
letting the texture move following the flow field, we take the fol-
lowing approach again based on cell subdivision. We subdivide the
current frame into cells that satisfy the velocity constraint that the
velocities of all the pixels in the same cell do not differ much, i.e.
below some threshold (for example, twice of the minimal velocity
in the cell). A cell is further subdivided into four smaller cells if its
size is larger than 4× 4 and the velocity constraint is not satisfied.
Then we move every cell to a new position according to its average
speed.

178

(a) (b)

(c)

Figure 3: An illustration of the effect of moving pixels individually:
(a) A vector field; (b) The first frame of moving texture; (c) The 20-
th frame of moving texture.

(a) (b)

Figure 4: An illustration of moving patches and validation of pixels.

2.2.2 Checking validity of pixels

Some pixels in the next frame may not be covered by any moved
cells from the current frame or may be covered by more than one
moved cell. These pixels are marked as invalid. Furthermore, for
a pixel covered only by one cell, if the flow vector direction at the
pixel differs from the average texture direction of the covering cell
by more than a threshold, this pixel will also be marked as invalid.
Figure 4 illustrates the process of checking for invalid pixels. The
patch α in Figure 4(a) is moved to its new location in Figure 4(b)
according to its average speed. However, since the flow directions
in cell β are not consistent with the texture directions in α , the
pixels in the small square (light gray, on the up-left corner of β)
in Figure 4(b) are marked as invalid. Invalid pixels form holes that
need to be filled by a subsequent synthesis process.

2.2.3 Filling holes

Figure 5 shows an example image with “holes” shown in black.
There are two requirements for filling the holes. The first is that
the filling texture be joined seamlessly with its surrounding texture.
The second is that the direction of the filling texture follow the vec-
tor directions of the pixels in the holes. To deal with irregular hole
boundaries, we use image masks to search for the best-fit filling
patches in the pre-computed rotated copies of the sample texture.
To build an image mask, we first define a rectangular cell which
covers the hole, as shown in Figure 6 and check every valid pixel

Figure 5: Many holes, shown as black regions, result from by va-
lidity checking.

a b a

Figure 6: (a) A cell with a hole (the white region); (b) The image
mask for filling the hole. (c) The hole is filled

in the cell. If the distance from the pixel to the hole boundary is
within a threshold D (D = 4, typically), the pixel is in the image
mask; otherwise, the pixel is not in the image mask. In this way, for
example, we construct the image mask in Figure 6(b) for the hole
in Figure 6(a). If a cell covering a hole is larger than the largest size
limit(32× 32) or the pixels in the hole do not satisfy the direction
constraint, we subdivide the cells into four smaller cells and build
mask for every cell.

To produce a smooth joining between the filling patch and the sur-
rounding patches of a hole, we define a blending function over the
image mask by

B(d) =

{

0, d > D,
1−d/(D+1), 0 < d ≤ D,

(1)

where d is the distance from a pixel to the hole boundary and D
is the distance threshold, i.e. the width of the image mask (see
Figure 6(b)). Aided by the image mask, we search in an appropriate
rotated copy of the sample texture to find the best-fit patch to fill the
hole. The fitting error is defined as

E =
B1−1

∑
i=0

B2−1

∑
j=0

T (i, j)(F(i, j)−G(i+u, j + v))2, (2)

where T (i, j) is the characteristic function of the support binary
image of the image mask, i.e. T (i, j) = 1 if the pixel (i, j) is in
the mask, and T (i, j) = 0 otherwise; B1, B2 are cell widths, F(i, j)
is the pixel value in the image mask, G(i, j) represents the sample
texture, and (u,v) is the left-bottom corner of a patch with the size
B1 ×B2 in the sample texture. Then, for all such patches in the
sample texture, we choose the one with the minimal E as the best-
fit patch, and use it to fill the hole and blend it with the surrounding
patches using the blending function given by Equation 1.

179

(a)

(b)

Figure 7: (a) Result without removing the blurring effect; (b) Result
after removing the blurring effect.

2.3 Removal of blurring

Since blending is used repeatedly for hole-filling, if unchecked, its
cumulative blurring effect would degrade the visual quality of the
moving texture towards the end of animation. To address this prob-
lem, we keep the count of the number of times blending has been
applied to a particular pixel and we check the average blending
count of each cell. If the average count of a cell is larger than cer-
tain threshold, which is typically set to 2, the cell will be marked as
over-blended and will be re-synthesized by a best-fit patch from the
sample texture. The procedure of searching for the best-fit patch is
similar to that in hole filling, however, the error is not defined within
the boundary but in the whole cell. This remedy step proves to be
effective in maintaining the image quality of the moving texture, as
it provides a safeguard against potentially blurring due to repeated
hole-filling and blending operations. Take Figure 7 for example.
Figure 7(a) shows the 100-th frame of a sequence of textures with-
out removing the blurring effect, and Figure 7(b) shows the 100-th
frame of the same sequence but with the removal of the blurring
effect. The latter has better image quality than the former as shown
by the zoomed-in views in Figure 7.

3 Results and Discussion

Figures 8 to 11 show four moving texture examples. In every fig-
ure, (a) shows the input sample texture and (b) shows the steady
flow field. (The vector field of Figure 11 is the same as the one in
Figure 3(a)). The four frames in Figure 8 through Figure 11 are
the first, the 30-th, the 70-th and the 100-th frames of the synthe-
sized moving textures. We see that the image quality is preserved
very well throughout the animation and the texture of each frame
resembles the sample texture. In Figures 8, 9 and 11, we use nor-
malized velocity for every pixel. However, in Figure 10, each pixel

has the same angular velocity, that means the speed of every pixel
is proportional to its distance to the circle center. Notice that the
velocity of the pixel near the center is very small and the velocity
near the boundary of the circle is very large. This great velocity dif-
ference may cause the texture near the boundary to move too fast,
while the texture near the center moves too slow or even does not
move because the distance of every step is smaller than one pixel.
To avoid these undesirable effects of possible aliasing, we limit the
velocity of every pixel within a range while moving the patches to
make sure that the texture cannot move too fast or too slow. We use
an accumulated buffer to record the total moving distance of each
slow moving pixel, and actually move a “slow” pixel only when its
accumulated distance is beyond a threshold.

Our algorithm produces satisfactory results for many textures, but
not all. In general, semi-regular and anisotropic textures tend to
produce the best results. For example, the isotropic sample texture
in (Figure 12(a)) produces the first frame in (Figure 12(c)) that does
not exhibit any directional property of the vector field. Figure 12(d)
shows a sample texture with which our algorithm does not work
well. This sample texture leads to unacceptable visual artifacts in
the 20-th frame of animation (sees Figure 10(b) for the flow field
used in this example). The reason for this failure is that the direction
constraint in the small cells at the central region does not respect the
large brick structure very well.

4 Conclusion and Future Work

We have presented a novel method for synthesizing a moving tex-
ture following a steady flow. Our method is the first for synthe-
sizing a moving structured texture and provides a useful technique
for generating special visual effects in computer graphics. Besides
exploiting the latest techniques for synthesizing a 2D directional
texture, we have successfully addressed the problem of preserving
the frame coherence of the moving texture, while maintaining the
original texture structure and visual quality of each texture frame.
Furthermore, unlike most previous methods that use only random
noise textures for texture advection, our method allows the use of
more regular and structural texture, thus enhancing greatly the vi-
sualization effects by using texture structures to communicate more
clearly the streamlines of a flow field.

There are some obvious problems that call for further research.
With our current implementation it takes about 2 minutes on a com-
mon PC to generate a new texture frame, with the most time spent
on hole-filling. So one problem is how to improve the efficiency
of our method or devise other faster methods for solving the same
problem of synthesizing a moving texture for a given flow field,
hopefully achieving real-time performance. Also, we note that all
the examples presented here use steady flow fields. We expect our
method to work for an unsteady flow as well, as long as the flows
do not change radically with respect to time. Finally, it is a natural
extension to consider synthesizing a moving texture over a surface
in 3D space.

References

EFROS, A., AND FREEMAN, W. T. 2001. Image quilting for tex-
ture synthesis and transfer. In Proc. SIGGRAPH ’01, 341–346.

EFROS, A., AND LEUNG, T. 1999. Texture syntheis by non-
parametric sampling. In Proc. IEEE International Conference
on Coupter Vision(ICCV’99), 1033–1038.

180

(a)

(b) (c)

(d) (e) (f)

Figure 8: (a) An input sample texture (size 128×128); (b) A flow field; (c) The 1st frame of the animation (size 512×512); (d)
The 30th frame of the animation; (e) The 70th frame of the animation; (f) The 100th frame of the animation.

(a)

(b) (c)

(d) (e) (f)

Figure 9: (a) An input sample texture (size 128×128); (b) A flow field; (c) The 1st frame of the animation (size 512×512); (d)
The 30th frame of the animation; (e) The 70th frame of the animation; (f) The 100th frame of the animation.

181

(a)

(b) (c)

(d) (e) (f)

Figure 10: (a) An input sample texture (size 128×128); (b) A flow field; (c) The 1st frame of the animation (size 512×512); (d)
The 30th frame of the animation; (e) The 70th frame of the animation; (f) The 100th frame of the animation.

(a)

(b) (c)

(d) (e) (f)

Figure 11: (a) An input sample texture (size 128×128); (b) A flow field; (c) The 1st frame of the animation (size 512×512); (d)
The 30th frame of the animation; (e) The 70th frame of the animation; (f) The 100th frame of the animation.

182

(a)

(b) (c)

(d)

(e) (f)

Figure 12: Failed examples: (a) An isotropic sample texture (size 128×128); (b) A flow field; (c) The first frame of the animation;
(d) A sample texture of brick (size 128×128); (e) The first frame of animation; (f) The 20th frame of animation.

GORLA, G., INTERRANTE, V., AND SAPIRO, G. 2003. Texture
synthesis for 3d shape representation. IEEE Trans. Vis. Comput.
Gr. 9, 4, 212–224.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proc. SIG-
GRAPH ’01, 327–340.

LIANG, L., LIU, C., XU, Y. Q., GUO, B., AND SHUM, H. Y.
2001. Real-time texture synthesis by patch-based sampling.
ACM Trans. Gr. 20, 3 (July), 127–150.

NEYRET, F. 2003. Advected textures. In Eurographics/SIGGRAPH
Symposium on Computer Animation’03.

TAMURA, H., MORI, S., AND YAMAWAKI, T. 1978. Textural
features corresponding to visual perception. IEEE Trans. Syst.
Man Cyber. 8, 6, 460–472.

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND
SHUM, H. Y. 2002. Synthesis of bidirectional texture functions
on arbitrary surfaces. ACM Trans. Gr. 21, 3 (July), 665–672.

TURK, G. 2001. Texture synthesis on surfaces. In Proc. SIG-
GRAPH ’01, 347–354.

VAN WIJK, J. J. 2002. Image based flow visualization. ACM Trans.
Gr. 21, 3 (July), 745–754.

WANG, B., WANG, W. W., YANG, H. P., AND SUN, J. G. 2004.
Efficient example-based painting and synthesis of 2d directional
texture. IEEE Trans. Vis. Comput. Gr. 10, 3, 266–277.

WEI, L. Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. In Proc. SIGGRAPH ’00,
479–488.

WEI, L. Y., AND LEVOY, M. 2001. Texture synthesis over arbi-
trary manifold surfaces. In Proc. SIGGRAPH ’01, 355–360.

XU, Y. Q., GUO, B., AND SHUM, H. Y. 2000. Chaos mosaic:
Fast and memory efficient texture synthesis. In Tech. Rep. 32,
Microsoft Research Asia.

YING, L. X., HERTZMANN, A., BIERMANN, H., AND ZORIN, D.
2001. Texture and shape synthesis on surfaces. In Proc. of 12th
Eurographics Workshop on Rendering, 301–312.

183

